Environmental Aspects of Thin Film Module Production and Product Lifetime

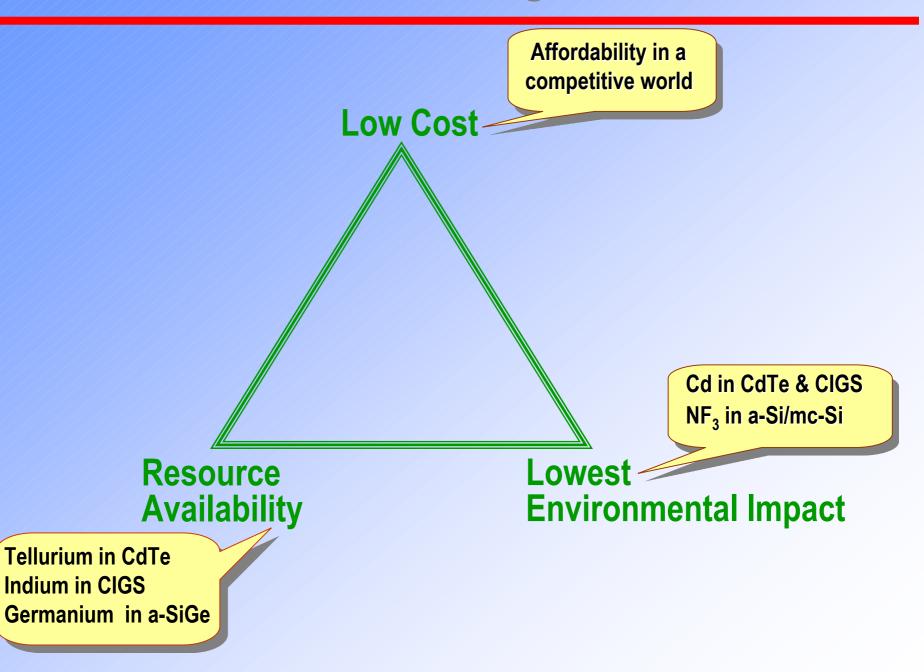
Vasilis Fthenakis

PV Environmental Research Center Brookhaven National Laboratory and

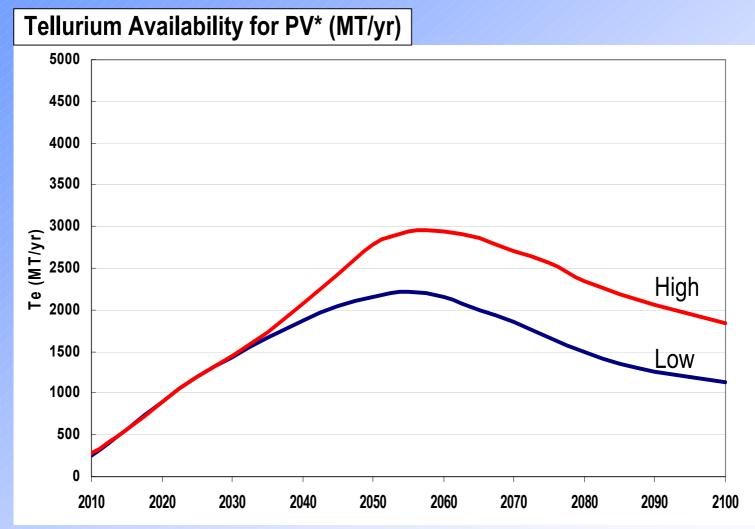
Center for Life Cycle Analysis Columbia University

Invited Plenary Presentation at the 25th European Photovoltaic Solar Energy Conference, Valencia, September 9, 2010

email: vmf@bnl.gov web: www.pv.bnl.gov www.clca.columbia.edu

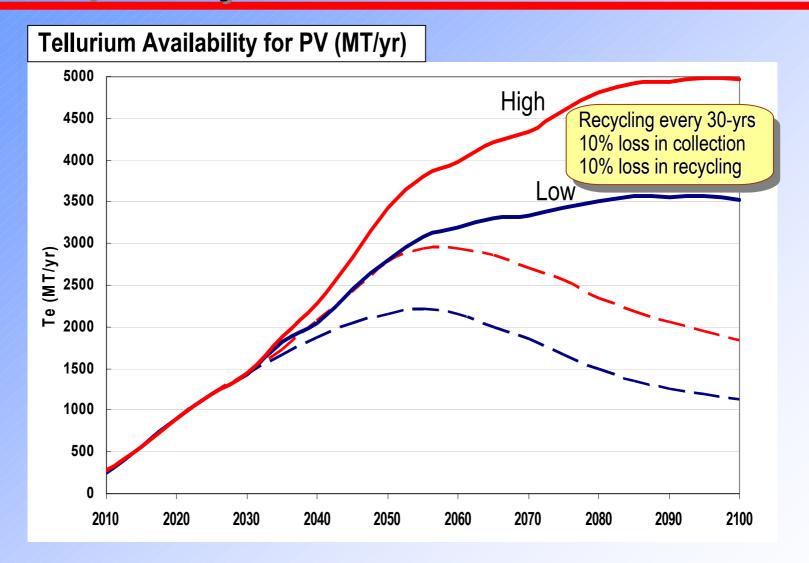


PV Sustainability Criteria


- Photovoltaics are required to meet the need for abundant electricity generation at competitive costs, whilst conserving resources for future generations, and having environmental impacts lower than those of alternative future energyoptions
- **Sustainability Metrics:**
- Low Cost
- Resource Availability
- Minimum Environmental Impact

Thin-Film PV - The Triangle of Success

Tellurium for PV* from Copper Smelters



•Global Efficiency of Extracting Te from anode slimes increases to 80% by 2030 (low scenario); 90% by 2040 (high scenario)

* 322 MT/yr Te demand for other uses has been subtracted

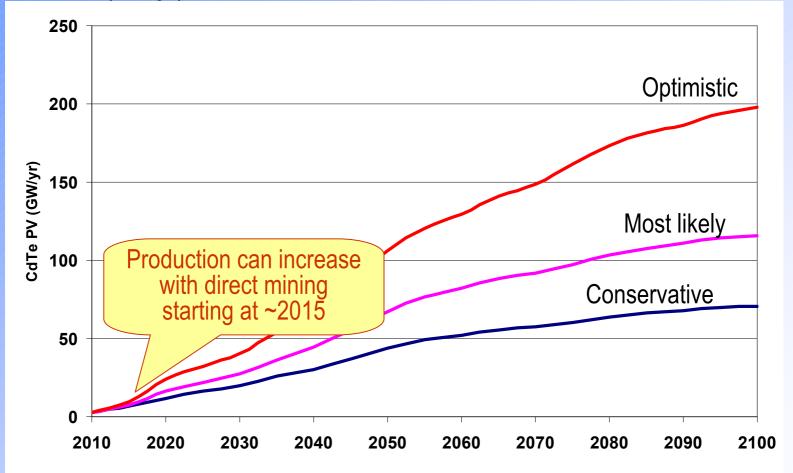
Fthenakis, Renewable & Sustainable Energy Reviews, 2009

Te Availability for PV: Primary + Recycled

Assumptions for Thin-Film PV Growth

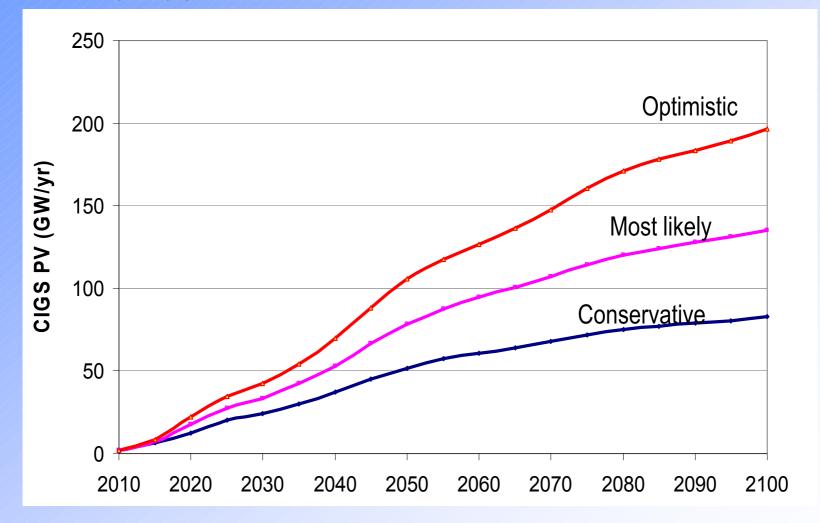
PV Type	Efficiency (%)				
	2008	2020			
		Conservative	Most likely	Optimistic	
CdTe	10.8	12.3	13.2	14	
CIGS	11.2	14	15.9	16.3	
a-Si-Ge	6.7	9	9.7	10	

Fthenakis, *Renewable & Sustainable Energy Reviews*, 2009 Update 2010


Assumptions for Thin-Film PV Growth

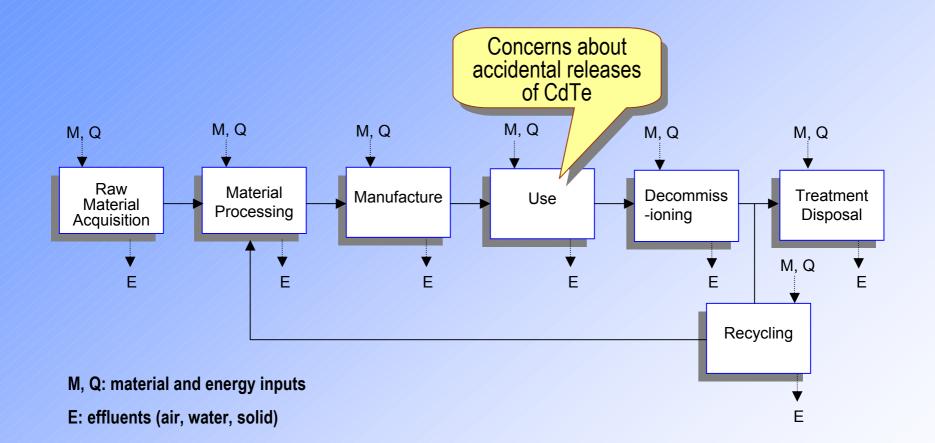
PV Type	Efficiency (%)			Layer Thickness (µm)				
	2003	2020			2008	2020		
		Conservative	Most likely	Optimistic		Conservative	Most likely	Optimistic
CdTe	10.3	12.3	13.2	14	3.3	2.5	1.5	1.
CIGS	11.2	14	15.9	16.3	1.6	1.2	1.	0.8
a-Si-Ge	6.7	9	9.7	10	1.2	1.2	1.1	1.

Fthenakis, Renewable & Sustainable Energy Reviews, 2009


CdTe PV Annual Production Constraints

CdTe PV (GW/yr)

CIGS Material-based Growth Constraints*

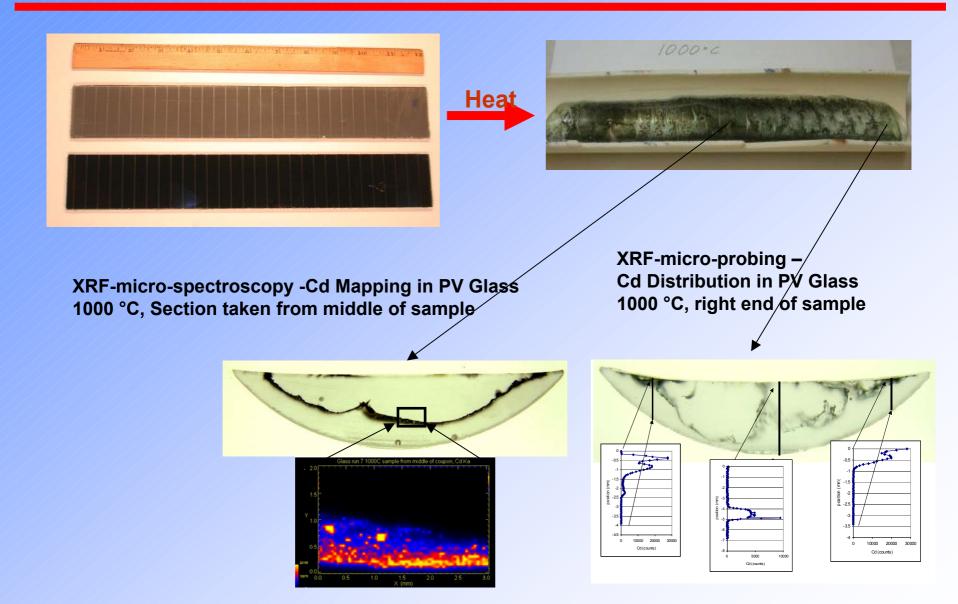

CIGS PV (GW/yr)

Fthenakis, IEEE PVSC, June 23, 2010

* 1/2 of In production growth is allocated to PV

Life Cycle Environmental Impacts

PV Roof-top fires


Negligible emissions during fires

Fthenakis, Renewable and Sustainable Energy Reviews, 2004,

Fthenakis et al., Progress in Photovoltaics, 2005

Based on standard protocols by the ASTM and UL Expert Peer reviews by: BNL, US-DOE, 2004 EC-JRC, 2004 German Ministry of the Environment, (BMU), 2005 French Ministry of Ecology, Energy, 2009

CdTe PV Fire-Simulation Tests: XRF Analysis

Fthenakis, Fuhrman, Heiser, Lanzirotti, Fitts and Wang, Progress in Photovoltaics, 2005

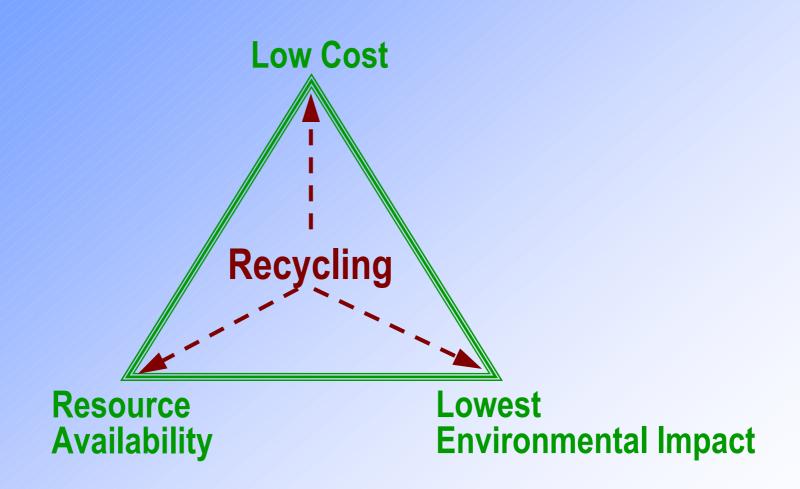
CdTe PV Product Life – Accidental Releases

Leaching from shuttered modules

- 10 mm fragments -Rain-worst-case scenario- "leached Cd concentration in the collected water is no higher than the German drinking water concentration." (Steinberger, <u>Frauhoffer Institute Solid State Technology</u>, Progress in Photovoltaics, 1998)
- < 4 mm fragments "Leached Cd exceeds the limits for disposal in inert landfill but is lower than limits for ordinary landfills (Okkenhaug, <u>Norgegian Geotechnical Institute</u>, Report, 2010)

Uncontrolled dumping of CdTe-modules will result in greater environmental risks compared with disposal in approved landfill sites

CdTe PV Product Life – Accidental Releases


Leaching from shuttered modules

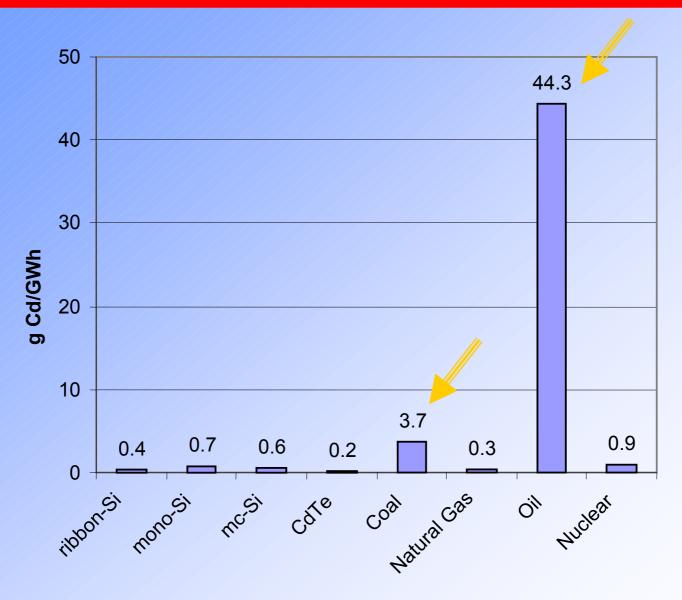
- 10 mm fragments -Rain-worst-case scenario- "leached Cd concentration in the collected water is no higher than the German drinking water concentration." (Steinberger, <u>Frauhoffer Institute Solid State Technology</u>, Progress in Photovoltaics, 1998)
- < 4 mm fragments "Leached Cd exceeds the limits for disposal in inert landfill but is lower than limits for ordinary landfills" (Okkenhaug, <u>Norgegian Geotechnical Institute</u>, Report, 2010)
- < 2 mm fragments "CdTe PV sample failed California TTLC and STLC tests" (Sierra Analytical Labs for the "Non-Toxic Solar Alliance", 2010)

All PV modules would fail the California tests c-Si for Ag, Pb, and Cu (ribbon), CIGS for Se; a-Si marginally for Ag Eberspacher & Fthenakis, 26th IEEEPVSC, 1997; Eberspacher 1998

We advocate for all PV modules to be recycled at the end of their life

The Triangle of Success

Atmospheric Cd Emissions from the Life-Cycle of CdTe PV Modules – Reference Case

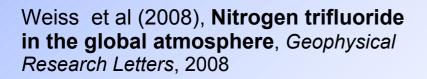

Process	(g Cd/ton Cd*)	(%)	(mg Cd/GWh)
1. Mining of Zn ores	2.7	0.58	0.02
2. Zn Smelting/Refining	40	0.58	0.30
3. Cd purification	6	100	7.79
4. CdTe Production	6	100	7.79
5. CdTe PV Manufacturing	0.4*	100	0.52*
6. CdTe PV Operation	0.05	100	0.06
7. CdTe PV Recycling	0.1*	100	0.13*
TOTAL EMISSIONS			16.55

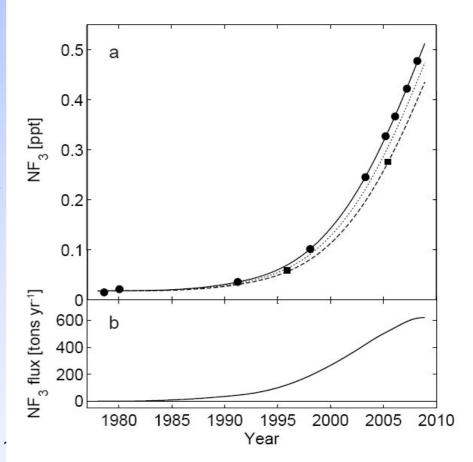
Plus 200 mg Cd/GWh from fossil fuels in the electricity mix in the life-cycle of CdTe PV

Fthenakis V. Renewable and Sustainable Energy Reviews, 8, 303-334, 2004

* 2009 updates

Total Life-Cycle Cd Atmospheric Emissions

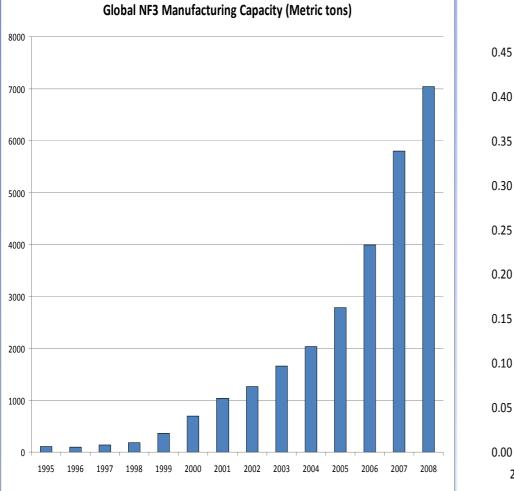

Example 1 Fthenakis and Kim, Thin-Solid Films, 515(15), 5961, 2007 *Fthenakis, Kim & Alsema, Environ. Sci. Technol, 42, 2168, 2008*


GHGs Used in PV Module Manufacturing

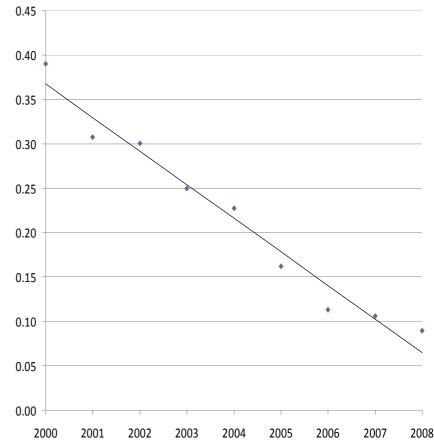
Substance	Source		
CF4	c-Si surface etching		
C2F6	c-Si reactor cleaning		
SF6	a-Si/nc-Si reactor cleaning		
NF3	a-Si/nc-Si reactor cleaning		

PV: climate killer? The NF3 story

Photon Magazine, December 2008

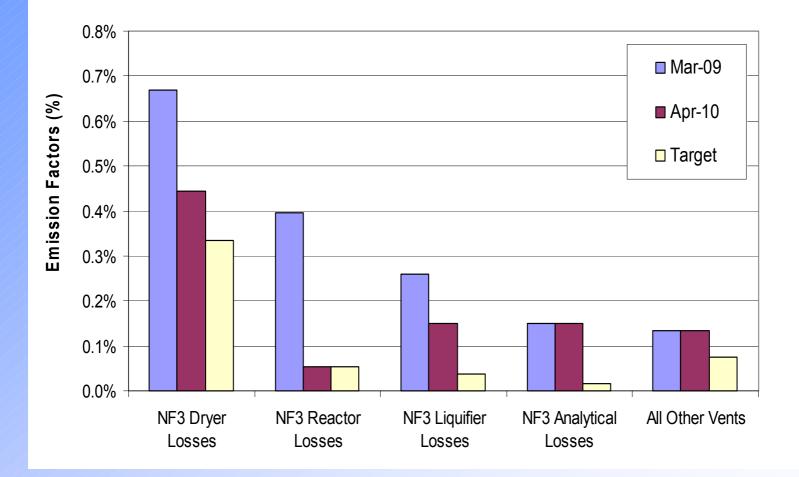

NF₃ Emissions in a-Si/nc-Si PV Life-Cycles

 Analysis based on detailed data from Air Products – NF₃ Production Applied Materials – NF₃ Use in PV


Qualitative information from

- Kanto Denka NF₃ Production
- Oerlikon NF₃ Use in PV

Trends in NF₃ Production and Emission Factors


NF3 Emission Factor Relative to Global Production 2000 - 2008

Source: R. Ridgeway, Air Products

Emission Trends in NF3 Manufacturing

Known NF3 Emission Factors

Source: R. Ridgeway, Air Products

NF3 Emission Measurements in Typical a-Si and tandem Si PV Fabs

Factory	Source	avg NF3 Conc (ppm)	DRE (%)	Emission Factor (%)
A	Applied Materials	1.0	99.98	0.02
В	Applied Materials	8.5	99.90	0.1
С	Applied Materials	27.5	99.75	0.25
D	Third Party	2.0	99.98	0.02
E	Third Party	8.6	99.90	0.1
F	Third Party	11.0	99.87	0.13
Average			99.89	0.11

For average U.S. insolation (1800 kWh/m²/y) NF₃ life-cycle emissions add 2 - 7 g/kWh of CO_{2-eq}

Conclusion

- Thin-film PV can reach very high rates of growth without being impaired from material availability issues.
- Recycling spent modules will become increasingly important in resolving cost, resource, and environmental constraints to large scales of sustainable growth.
- The controlled use of NF₃ in the a-Si/nc-Si PV industry will not alter the environmental benefits of PV replacing fossil fuels if best practices are adopted globally.

Email: VMF@BNL.GOV 23 www.pv.bnl.gov

Acknowledgment

- Support from US-DOE, Solar Technologies Program
- Jeff Britt Global Solar
- Jun Ki Choi, Huyng Chul Kim BNL
- Daniel Clark, Mehran Moalem Applied Materials
- Al Compaan –U. Toledo
- Xunming Deng –Xunlight
- Subhendu Guha Uni-Solar
- D.R. Nagaraj Cytec
- Funsho Ojebuoboh, Alex Heard, Dave Eaglesham, Tim Mays, Lisa Krueger -First Solar
- Robert Ridgeway –Air Products
- Jim Sites –Colorado State U.
- Bill Stanbery -HelioVolt
- Marc Suys, 5NPlus
- Bolko von Roedern NREL
- Ken Zweibel –George Washington U.

email: VMF@BNL.GOV web: www.pv.bnl.gov

