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Abstract

In this article, we report on the correlation between the irradiance variability observed at two neighboring sites as a function of their
distance, and of the considered variability time scale. Correlation is the factor that determines whether the combined relative fluctuations
of two solar systems add up when correlation is high, or attenuate when correlation is low.

Using one-dimensional virtual networks in 24 US locations and cloud motion derived from satellites as experimental evidence, we
observe station pair correlations for distances ranging from 100 m to 100 km and from variability time scales ranging from 20 s to
15 min.

Within the limits of the assumptions from one-dimensional virtual networks, results show that the relationship between correlation,
distance and time scale is predictable and largely independent of location and prevailing insolation conditions. Further, results indicate
that the distance at which station pairs become uncorrelated is a quasi linear function of the considered time scale.
� 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

The short-term variability of solar resource is perceived
as a roadblock to the large scale deployment of solar power
generation. This issue is the subject of several major
research initiatives in the United States and internationally,
(e.g., CSI, 2010; USDOE, 2009; BNL, 2010; SMUD, 2010;
IEA, 2010).

In a recently published article, Hoff and Perez (2010a,b)
advanced that the relative short-term variability of a fleet
of identical PV generators decreases as the inverse of the
square root of their number if the fluctuations of each
system are uncorrelated. They defined relative short-term
variability as the variability resulting from the fleet of
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systems, and quantified it by the standard deviation of
the fleet’s time series of changes in power output, normal-
ized to the fleet’s total capacity. More recently, Perez et al.
(2011), building upon earlier work by Skartveit and Olseth
(1992), showed that short-term variability for a single
system at a given point in time could be estimated from
hourly satellite-derived irradiances data such as Solar
Anywhere (2010) or the NSRDB (1998–2005).

In this article we focus on station pairs, and investigate
the correlation of their short-term variability as a function
of their distance. A zero correlation would indicate that,
per Hoff and Perez (2010a,b), their cumulative relative var-
iability will be 1=

ffiffiffi
2
p

times their individual relative variabil-
ity. Further, the possible existence of negative correlation
at some key distance would indicate that fluctuations tend
to cancel out, as hypothesized in Hoff and Perez’s optimum
point.
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2. Methods

2.1. Experimental data

Experimental measuring station pairs positioned at arbi-
trary distances and located in arbitrary climatic environ-
ments would constitute the ideal source of experimental
data to undertake the present analysis. Unfortunately, this
information is not fully available just yet. Although a few
networks do exist where a partial validation of the present
results will be possible (e.g., Kleissl, 2009), the necessary
dense solar resource grids are on the drawing board or in
the startup phase as of this writing – e.g., CSI (2010),
SMUD (2010), BNL (2010).

However, as introduced by Hoff and Perez (2010a,b),
there is an effective proxy to gridded networks of stations:
virtual networks. A virtual network consists of a single
high-frequency measuring station, from which virtual sta-
tions can be inferred if the cloud speed aloft, V, is known.
Letting Istation

t be the irradiance measured at the station at
time t, the irradiance at a neighboring virtual station,
Ivirtual

t located at a distance L is given by:

Ivirtual
t ¼ Istation

t1
ð1Þ

with

t1 ¼ t � L=V ð2Þ

The virtual network concept makes two limiting
assumptions:

(1) the virtual stations are located in the direction of the
cloud motion vector; and

(2) the cloud fields stay nearly unchanged as they transit
over the stations, although signal compression or
extension is possible due to evolving cloud speeds.

The results presented in this paper are therefore valid
within the framework of these two limiting assumptions.
The second assumption may be considered as conservative
because cloud field deformation over time would reduce the
correlation of a pair of stations’ fluctuations. The first lim-
itation’s impact will have to be evaluated in a planned fol-
low-on study by analyzing high resolution network data
when these become available, and by analyzing high reso-
lution satellite images.

High frequency GHI and DNI data were obtained for 24
measuring stations, including 17 stations in the ARM net-
work (Stokes and Schwartz, 1994) and seven stations in
the SURFRAD network (SURFRAD, 2010). The ARM
stations record data at a rate of three measurements per
minute (20 s data) while the SURFRAD stations record
data at a rate of one measurement per minute (1 min data).
Fifteen months of data were analyzed for each station. A
complete list of the stations is provided in Table 1.

Virtual networks were constructed around each station
per Eqs. (1) and (2) by using the time/site specific cloud
speeds produced as part of Solar Anywhere’s operational
cloud motion irradiance forecasts (Perez et al., 2010b).
Site-time specific cloud speeds are derived by minimizing
the RMSE of consecutive satellite images. This approach
was first described and implemented by Lorenz et al.
(2004). The cloud speeds have an operational frequency of
one per hour. For the present analysis the cloud speed asso-
ciated with each high frequency ground measurement was
obtained via linear interpolation of the hourly speeds.
Fig. 1 illustrates the hourly cloud speeds derived for a
sample high variability day at the ARM central facility,
superimposed upon the station’s measured GHI.

2.2. Quantifying station pair variability correlation

Hoff and Perez (2010a,b) quantified the relative short-
term variability of a fleet of N solar generators as:

rRN
Dt ¼

1

CFleet

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

XN

n¼1
DPn

Dt

h ir
ð3Þ

where CFleet is the total installed peak power of the fleet
and DPn

Dt is the time series of changes in mean power out-
put at the nth PV installation using a sampling time inter-
val of Dt.

In this article, we focus our attention on the changes in
the clearness index DKt* instead of the changes in power
output DP. Kt� is the clear sky index (ratio between GHI
and clear sky global irradiance, GHIclear). As such, Kt�

embodies the relative characteristics of flat plate PV sys-
tems’ output fluctuations. For the present analysis, it offers
two advantages: (1) normalizing variability to unity, and
(2) removing the effect of solar geometry which is a source
of variability, albeit fully predictable, as Dt increases. The
DKt� random variable time series is illustrated at the bot-
tom of Fig. 1 for Dt = 20 s and 15 min.

The station pair correlation between the two random
variables DKt�station

Dt and DKt�virtual
Dt is calculated indepen-

dently for each day and each virtual network for virtual
station distances ranging from 100 m to 100 km, and for
sampling intervals of 20 s (only for the ARM-based net-
works), 1 min, 5 min and 15 min. Longer time intervals
are not investigated since variability questions pertaining
to longer time scales can already be addressed today by
analyzing existing gridded satellite-derived data sets.

For a given pair of stations extracted from one of the 24
virtual networks, for a given day j, a given time interval Dt,
and a given distance L, the station pair correlation, CorL

Dtj is
calculated from all high frequency data points in that day
for solar elevations in excess of 10�. In effect the station-
to-virtual is the station’s time lag autocorrelation with
the time lag depending both on the considered distance
and the observed cloud speed.

For that network location, the prevailing station pair
correlation, CorL

Dt, is derived as the weighted mean of each
individual day’s correlations. The weighting factor is the
day’s variability quantified by the daily variance of DKt�Dt;j.



Table 1
Experimental data.

Station Latitude Longitude Elevation (m) Climate Time span

Arm network ARM-E27 35.27 96.74 386 Continental 1/09–4/10
ARM-E19 35.56 98.02 421 Continental 1/09–4/10
ARM-E20 35.56 96.99 309 Continental 1/09–4/10
ARM-E21 35.62 96.07 240 Continental 1/09–4/10
ARM-E15 36.43 98.28 418 Continental 1/09–4/10
ARM-C1 36.61 97.49 318 Continental 1/09–4/10
ARM-E13 36.61 97.49 318 Continental 1/09–4/10
ARM-E12 36.84 96.43 331 Continental 1/09–4/10
ARM-E16 36.06 99.13 602 Continental 1/09–4/10
ARM-E11 36.88 98.29 360 Continental 1/09–4/10
ARM-E10 37.07 95.79 248 Continental 1/09–4/10
ARM-E9 37.13 97.27 386 Continental 1/09–4/10
ARM-E7 37.38 96.18 283 Continental 1/09–4/10
ARM-E6 37.84 97.02 409 Continental 1/09–4/10
ARM-E4 37.95 98.33 513 Continental 1/09–4/10
ARM-E1 38.20 99.32 632 Continental 1/09–4/10
ARM-E2 38.31 97.30 450 Continental 1/09–4/10

Surfrad network Goodwin creek 34.25 89.87 98 Subtropical 1/09–4/10
Desert rock 36.63 116.02 1007 Arid 1/09–4/10
Bondville 40.05 88.37 213 Continental 1/09–4/10
Boulder 40.13 105.24 1689 Semi-arid 1/09–4/10
Penn state 40.72 77.93 376 Humid continental 1/09–4/10
Sioux falls 43.73 96.62 473 Continental 1/09–4/10
Fort peck 48.31 105.10 634 Continental 1/09–4/10
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CorL
Dt ¼

Pn
j¼1ðCorL

Dtj � Var½DKt�Dt;j�ÞPn
j¼1Var½DKt�Dt;j�

ð4Þ

where n is the total number of station-days analyzed.
The resulting correlation is thus influenced by the

days with the highest variability and least influenced by
days with little or no variability such as clear days when
(1) variability is not an issue and (2) individual day corre-
lations may depart from the trend because they reflect
other than cloud induced transients such as solar
geometry.1
3. Results

The objective is to understand how station pair correla-
tion varies as a function of distance and the considered
sampling interval.

Starting with the observation of the relationship
obtained from one day’s worth of observations at one of
the virtual network, we proceed with analyzing the com-
posite trend resulting from all the days analyzed at that
same network location per Eq. (4), investigating how the
single day’s relationship evolves. Finally we observe how
the relationship further evolves when all 24 virtual network
locations are considered.
1 Using kt* removes most but not all effects of solar geometry because
the reference clear sky is not exactly calibrated for each data point’s
conditions.
3.1. Single virtual network, single day example

For the single day example we selected a highly variable
day for the ARM central facility, April 19, 2009, illustrated
in Fig. 1.

The virtual station pair correlation for that day is plotted
in Fig. 2 as a function of distance for each sampling
interval.

Correlation reaches zero at respectively 350 m, 800 m,
2.7 km and 7.8 km for sampling intervals of 20 s, 1 min,
5 min and 15 min. Beyond the zero crossover, the consid-
ered station pairs do not exhibit any significant positive cor-
relation. It is interesting to note that in each case,
correlation becomes slightly negative beyond the zero cross-
over point. The negative correlation indicates that at some
distance on that day (respectively 600 m, 1 km, 5 km and
10 km for Dt of 20 s, 1 min, 5 min and 15 min) the effect
of the passing clouds resulted in a partial cancelation of
fluctuations, when the succession of cloudy and sunny peri-
ods tended to be in opposition of phase for all time scales at
the two sites. This negative correlation effect might be trace-
able to the one-dimensional nature of the virtual network
and will have to be investigated further when two-dimen-
sional real network data become available.

3.2. Single virtual network, all data

Fig. 3 is similar to Fig. 2, but the results are based on all
452 days analyzed at the ARM central facility. The line for
each time scale is the weighted mean of individual days’
correlations per Eq. (4). The dotted lines represent plus



Fig. 1. Sample high-variability day in the ARM network, showing 20s GHI, 15 min GHI and hourly interpolated cloud speeds.

Fig. 2. Single virtual network, single day station pair correlation as a function of distance and time scale.
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or minus one standard deviation around the weighted
mean. The standard deviation is computed from the
weighted sample variance.

The resulting traces cross the zero correlation threshold
at respectively 400 m, 850 m, 3 km and 9 km for each
considered sampling intervals, i.e., remarkably close to
the single day example shown above. The tightness of the
standard deviation indicates that individual days do not
depart significantly from the trend, particularly for shorter
sampling intervals (20 s and 1 min).

Interestingly, the resulting trend for the ARM site con-
serves the small negative correlation peak observed for the



Fig. 3. Single virtual network’s mean station pair correlation trends resulting from 15 months of data. The dotted line represent plus or minus one
standard deviation around the mean trend.

Fig. 4. Station pair correlation trends resulting from all virtual networks and 15 months of data. Thin gray lines represent individual networks.
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individual day, despite the differing cloud speeds and cloud
shapes that occurred each hour of each day.
3.3. All virtual networks, all data

Fig. 4 is similar to Figs. 2 and 3, but includes all data
points analyzed at all locations (i.e., nearly 17 million
20 s data points). The resulting heavy line is the 24-network
mean (only 17 networks for DT = 20 s). Individual net-
works are represented by the thin gray lines.

The agreement between all networks, including nearly
identical zero crossover points and negative correlation
peaks, is remarkable given the diversity of possible weather
conditions and cloud variability drivers in highly differing
climatic environments.
4. Discussion

The virtual network analysis undertaken here on a large
array of climatic environments, weather drivers, and sea-
sonal conditions leads to a remarkably well defined set of
trends linking distance, fluctuation frequency and station
pair correlation.

The evidence from this exhaustive analysis suggests that
20 s fluctuations become uncorrelated positively at a dis-
tance of less than 500 m. The distances are respectively



Fig. 5. Zero correlation crossover distance as a function of fluctuation
time scale.

Fig. 6. Comparing single site and 40 � 40 km extended variability for differe
uncorrelated locations and at 15 min it includes �16 such locations).
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1 km, 4 km and 10 km for fluctuation time scales of 1, 5
and 15 min respectively.

The relationship between the zero correlation crossover
distance and Dt is quasi linear as can be seen in Fig. 5. This
quasi-linearity is consistent with the concept of the disper-

sion factor introduced earlier by Hoff and Perez (2010a,b)
which embodies time scale, cloud speed and distance into
one single parameter determining variability. Ongoing
studies by Mills and Wiser (2010) and Hoff and Perez
(2010a,b) indicate that the linear relationship could be
extended at either end of the current Dt span to estimate
station pair correlation for other time scales.

Extrapolating the present results to the case of a homo-
geneously dispersed solar resource in a metropolitan area
such as the greater New York city area (40 � 40 km) sug-
gests that the high frequency (20 s) variability experienced
by a single small system should be reduced by a factor of
nt fluctuation time scales (at 20 s, the considered area includes �64,000
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80 when considering the entire metropolitan area.2 The
variability reduction would become smaller as the consid-
ered frequency increases: the metropolitan variability
would be reduced by respectively 40, 10 and 4 for fluctua-
tion time scales of 1, 5 and 15 min. This example is illus-
trated in Fig. 6, comparing the DKt�Dt time series of a
single installation to that of a homogeneous hypothetical
deployment of systems over a 40 � 40 km area.

The findings of this study are consistent with limited evi-
dence assembled from measurement station pairs – e.g., see
Mills and Wiser, 2010; Soubdhan and Calif, 2010; Murata
et al., 2009. However, these station pairs are too far apart
to provide an exhaustive validation, hence the present find-
ings will have to be substantiated by follow-on work. In
particular, Clean Power Research recently deployed a
low-cost 25-station modulable network in Central Califor-
nia designed to capture the relative DGHI data streams
down to scales of 10 s (Hoff and Perez, 2010a,b). Further,
as a planned next step of this work, we will analyze high
resolution (1 km) satellite images and apply the cloud
motion forecast algorithm (Perez et al., 2010b) to simulate
high resolution, high frequency irradiance time series over
any arbitrary extended area.

We will use these upcoming bottom-up and top-down
experimental data to verify, and as needed adjust, the present
virtual network-derived results. It is likely that these future
two-dimensional network verifications will refine these pre-
liminary results – in particular the negative correlation peak
observed for all sites and time scales will probably be reduced
or disappear. The negative correlation peaks are largely a
product of the one-dimensionality of the virtual networks
oriented in the direction of cloud movement. The decline
should be more gradual in other directions. As a conse-
quence, the distance vs. time scale relationships shown in
Fig. 5 will have to be refined after analyzing two-dimensional
experimental data from different climatic environments.
However, the absence of correlation occurring consistently
at all sites at distances beyond the negative correlation peak
should hold.
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