Long-term Estimates of Primary & Secondary Sources of Thin-film PV Materials -Recycling and Sustainability of PV-

Vasilis Fthenakis

PV Environmental Research Center Brookhaven National Laboratory

and Center for Life Cycle Analysis Columbia University

Presentation (invited) at PV Velocity Forum: Supply and Economics in Thin-film PV Materials, IEEE PVSC, Hawaii, June 23, 2010

email: vmf@bnl.gov web: www.pv.bnl.gov www.clca.columbia.edu

PV Sustainability Criteria

- Photovoltaics are required to meet the need for abundant electricity generation at competitive costs, whilst conserving resources for future generations, and having environmental impacts lower than those of alternative future energyoptions
- **Sustainability Metrics:**
- Low Cost
- Resource Availability
- Minimum Environmental Impact

The Triangle of Success

Presentation Outline

- Te, In & Ge needs in PV
 - Te & In availability
 - Primary production
 - Recycling
- Projected PV Production Constraints due to material unavailability (2010-2100)
- Recycling technologies & cost

Te, In & Ge Needs in thin-film PV

		2008
PV	Metal	Required (MT/GW)
CdTe	Те	176
CIGS	In	83
a-SiGe	Ge	73

Fthenakis, Renewable & Sustainable Energy Reviews, 2009

Te, In & Ge Needs in thin-film PV

		Current 2010							
PV	Metal	Required							
		(MT/GW)		Material Losses & Utilization	(%)				
CdTe	Те	106		Deposition loss	-30				
								Collected for recycling	24
				Module scrap loss	-3.5				
CIGS	In	83		Collected for recycling	3.1				
				Loss in purification & CdTe synthesis	-7				
a-SiGe	Ge	Ge 73		73		Total losses	-13.4		
			Material Utilization	86.6					

Te, In & Ge Supply & Needs in thin-film PV

		Current 2010	Expected 2020
PV	Metal	Required (MT/GW)	Required (MT/GW)
CdTe	Те	106	38-74
CIGS	In	83	11-20
a-SiGe	Ge	73	36-48

Assumptions for Thin-Film PV Growth

PV Type	Efficiency (%)				
	2008	2020			
		Conservative	Most likely	Optimistic	
CdTe	10.8	12.3	13.2	14	
CIGS	11.2	14	15.9	16.3	
a-Si-Ge	6.7	9	9.7	10	

Fthenakis, *Renewable & Sustainable Energy Reviews*, 2009 Update 2010

Assumptions for Thin-Film PV Growth

PV Type		Efficiency (%)				Layer Thick	ness (µr	n)
	2003	2020			2008		2020	
		Conservative	Most likely	Optimistic		Conservative	Most likely	Optimistic
CdTe	10.3	13	13.2	14	3.3	2.5	1.5	1.
CIGS	11.2	14	15.9	16.3	1.6	1.2	1.	0.8
a-Si-Ge	6.7	9	9.7	10	1.2	1.2	1.1	1.

Fthenakis, Renewable & Sustainable Energy Reviews, 2009

Thin CdTe Cells can become Thinner

Calculation: Ray Hsiao, PhD thesis, Colorado State, 2010 Experiment: V.V. Plotnikov, et al, 35th PVSC, 2009.

- Calculation uses 16% thick-CdTe baseline and assumes constant CdTe lifetime. Primary limitations to thin CdTe cells in the calculation:
- 1. Back-surface recombination
- 2. Incomplete absorption

Note that fill-factor should increase slightly when thinner since there is less material for recombination. Seems to be the case experimentally down to one micron.

Courtesy: Jim Sites, CSU

Tellurium Supply and Demand

Prices of Te & Se

2009 Te Consumption –550 MT

Source: USGS 2008 Ogebuoboh, 2007; Fthenakis, update 2010

Te from Copper Sulfide ores*

Approximate Global Distribution in Copper Circuits

*Cu, Cu-Mo, Cu-Au & polymetallic ores, e.g., Pb-Cu-Zn-Ag ores Ojebuoboh, *Proceedings EMC*, 2007; *Nagaraj*, 2010; *Fthenakis update* 2010

Extraction Efficiencies from Slimes for Te, Se and In

Year	Extraction Efficiency (%)			
	Tellurium	Selenium	Indium	
2002	33	52	30	
2006	40	80	70-80	
2009	45	80	80	

Main reason for lower Te than Se recovery rates

Several refineries recover Se but not Te

Anderson 2002; USGS 2004, 2006; Ogebuoboh, 2007; Fthenakis update 2010

Indium Supply and Demand

Price of Indium

2007 Indium Consumption –580 MT

	Share (%)	Trend
Monitor	33	1
TV	24	Ť
Notebook	15	↑
Cell phone	11	Ť
Other (PV)	17	Ť

Source: USGS 2008 Ogebuoboh, 2007

Long-Term Projections

Assumptions

- Te produced only as a by-product of Cu production from land-based sulfide ores:
 - All the growth in Te production is assigned to PV
- In and Ge are produced only as by-products of Zn production:
 - Half the growth in Indium production is assigned to PV

Projection of Primary Cu Production (based on forecasted consumption*)

Ayres et al., 2002

* economic and population growth assuming there are no (environmental) constraints in mining

Tellurium for PV* from Copper Smelters

•Global Efficiency of Extracting Te from anode slimes increases to 80% by 2030 (low scenario); 90% by 2040 (high scenario)

 * 322 MT/yr Te demand for other uses has been subtracted All the growth in Te production is allocated to PV

Te Availability for PV: Primary + Recycled

Assumptions for Thin-Film PV Growth

PV Type	Efficiency (%)				Layer Thick	ness (µr	n)	
	2008	2020		2008		2020		
		Conservative	Most likely	Optimistic		Conservative	Most likely	Optimistic
CdTe	10.8	13	13.2	14	3.3	2.5	1.5	1.
CIGS	11.2	14	15.9	16.3	1.6	1.2	1.	0.8
a-Si-Ge	6.7	9	9.7	10	1.2	1.2	1.1	1.

Fthenakis, Renewable & Sustainable Energy Reviews, 2009

CdTe PV Annual Production Constraints

CdTe PV (GW/yr)

Cumulative PV Production Constraints

CIGS Material-based Growth Constraints*

* 1/2 of In production growth is allocated to PV

Recycling R&D at BNL: CdTe and CIGS PV Modules

Fthenakis & Wang, Separating Te from Cd Waste, Patent No 7,731,920

Wang & Fthenakis, Kinetics Study on Separation of Cadmium from Tellurium in Acidic Solution Media Using Cation Exchange Resin, Journal of Hazardous Materials, B125, 80-88, 2005

Fthenakis & Wang, Extraction and Separation of Cd and Te from Cadmium Telluride Photovoltaic Manufacturing Scrap, Progress in Photovoltaics: Research and Applications, 14:363-371, 2006.

CdTe PV Recycling Cost Model

Price of Te vs. Total Cost/Profit (\$/module)

Choi and Fthenakis, in press

Te price	cost/profit
(\$/kg)	(\$/module)
120	-\$3.54
220	-\$2.95
300	-\$2.47
400	-\$1.88
500	-\$1.29
600	-\$0.69
1000	\$1.68

- Total Cost/Profit breakeven point around Te price of \$720/kg.
- Other costs are fixed

The PV CYCLE Voluntary Initiative

Current Members:

- Abound
- Aleo
- Arendi
- Avancis
- Bosch
- BP Solar
- Canadian Solar
- CEEG
- Chi Mei Energy
- Conergy
- DelSolar
- ET Solar
- First Solar
- GE Solar

- Gloria Solar
- Henot
- Isofoton
- Johanna Solar
- Kaneka
- Korax Solar
- Kyocera
- LDK Solar
- Martifer
- MoserBaer
- NexPower
- Photowatt
- Q-Cells
- REC

•

- Renergies
- Sanyo
- Scheuten Solar
- Schott Solar
- Schueco
- Sharp
- Siliken
- Solairedirect
- Solarfabrik
- Solarfun

- Solarworld
- Soleos
- Solon
- Solpower
- Sovello
- Sulfurcell
- Sunnoco
- Sunpower
- Solyndra
- Suntech
- Sunways
- T-Solar
- Tenesol
- Uni-Solar
- Vipiemme
- Würth Solar
- XGroup
- Yingli
- Yohkon

As of March 2010,

- 57 members and 9 associated members
- Full members cover more than 85% of European Market

- **Associated:**
- ASIF
 - BSW
- DGS
- ECN
- EPIA
- Photon Tech
- Roth & Rau
- Subsun
- Syndicat

The Triangle of Success

Conclusion

- Recycling can double the availability of tellurium and Indium in the 2nd part of the century
- Thin-film PV can reach very high rates of growth without being impaired from material availability issues
- Recycling spent modules and developing thinner solar cells will become increasingly important in resolving cost, resource, and environmental constraints to large scales of sustainable growth

Acknowledgment

- Jeff Britt Global Solar
- Jun Ki Choi, Huyng Chul Kim,– BNL
- Al Compaan –U. Toledo
- Xunming Deng –Xunlight
- Subhendu Guha Uni-Solar
- D.R. Nagaraj Cytec
- Funsho Ojebuoboh, Alex Heard, Dave Eaglesham, Tim Mays, Lisa Krueger -First Solar
- Jim Sites –Colorado State U.
- Bill Stanbery -HelioVolt
- Marc Suys, 5NPlus
- Bolko von Roedern –NREL
- Ken Zweibel –George Washington U.

email: vmf@bnl.gov web: www.pv.bnl.gov www.clca.columbia.edu

